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Motivation

Nonequilibrium dynamical mean field theory

• Nonequilibrium dynamical mean field theory (NE-DMFT) provides an
approximate solution to an interacting time-dependent lattice
problem [1].
• NE-DMFT assumes locality of the electronic self-energy which

is the case for d =∞.
• A lattice problem is mapped onto an effective time-dependent

impurity problem.

Continuous-time quantum Monte Carlo impurity solvers

• Continuous-time quantum Monte Carlo methods (CT-QMC) offer an
exact solution to impurity problems (up to stochastic noise) [2].
• However, any fermionic QMC suffers from fermionic sign problem

as it samples probability amplitudes which can be negative.
• Moreover, any real-time QMC is severely hindered by dynamical

sign problem, which leads to an exponential rise of observables’
error with a simulated time [3, 4].

Hybridization-expansion CT-QMC (CT-HYB-QMC)

Time-dependent Anderson impurity model

H(t) = Hloc(t) + Hbath(t) + Hhyb(t) + H
†
hyb(t)

Hloc(t) =
∑
σ

Edσ(t)d
†
σdσ + U(t) d

†
↑d↑d

†
↓d↓

Hbath(t) =

Nbath∑
pσ

εpσ(t) c
†
pσcpσ, Hhyb(t) =

Nbath∑
pσ

Vpσ(t) c
†
pσdσ

Dynamical partition function on Keldysh-Kadanoff-Baym contour

Z(β, tmax) = Tr
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e−βH(0)T−e−i

∫ 0
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0 dtH(t)
)
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Perturbative expansion in hybridization Hamiltonian

Z(β, tmax) = Tr
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∫
C ds(Hloc+Hbath)e

−i
∫
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†
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=
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Pictorial representation of hybridization-expansion configurations
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Observables within Monte Carlo: need for positive configuration weights

〈O(t)〉 =
1

Z
Tr
(
TC e−i

∫
C dsH(s)O(t)

)
=

∑
c 〈O(t)〉c sgn(w(c)) |w(c)|∑

c |w(c)|︸ ︷︷ ︸
MC average of 〈O(t)〉c sgn(w(c))

·
∑
c |w(c)|∑

c sgn(w(c)) |w(c)|︸ ︷︷ ︸
inverse average sign

• Well established method for equilibrium calculations.
• Works for an infinite bath and multiorbital impurity.

• Computational complexity ∼ O
(
〈k〉2CT-HYB ·M3

)
where 〈k〉CT-HYB is the average CT-HYB expan-

sion order and M is the size of the local Hilbert space.
• Average sign ∼ e−αtmax where α > 0.

Our development: CT-1/2-HYB-QMC

Idea: expand spin-down hybridization only

-iβ

0 tmax=
↓

Z

• Spin-up dynamics is solved explicitly since the time-dependent occupation of spin-down impurity level
is fixed for a given configuration→ effective single particle problem.
• Solution of a time-dependent single particle problem possible only for a finite bath.
• Method useful only for a single orbital impurity.

• Computational complexity ∼ O
(

1
4 〈k〉

2
CT-HYB · (Nbath + 1)3

)
→ 〈k〉 reduced by 2.

• Average sign ∼ e−
α
2 tmax → timescales twice as long as in CT-HYB-QMC are accessible.

Benchmark: impurity level quench

Average sign and expansion order
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Edσ(0) = −6, Edσ(t > 0) = −3; U(t) = 6; Nbath = 10; bandwidth 2D = 8; β = 5; Γ =
πNbath|Vp|2

2D = 1

Most promising improvement: Inchworm QMC

Idea: use information gained up to t ′max
for a new simulation up to tmax > t ′max

-iβ

0
t'max=Z tmax

↑↓
t'max<t<tmax

Inchworm algorithm [5]

• Start from tmax = 0 and perform a series of QMC calculations
increasing tmax each time (”inching”).
• During each simulation measure propagator P (t, t′) which will be

used to evaluate QMC configurations in a simulation with an in-
creased tmax.

• Propagator Pnm(t, t′) =
〈
n
∣∣TC e−i ∫ tt′ dsH(s)

∣∣m〉 encodes an exact
time evolution in impurity’s Hilbert space.

• Inchworm QMC belongs to a class of bold line QMC solvers, in
which bold (i.e. partially resummed) configurations are sampled
• If the ”inching” steps are sufficiently small, the exponential dy-

namical sign problem does not occur [6].
• The computational burden scales with the size of P ∼ O

(
t2max

)
.

• Multiorbital impurities and infinite baths possible.
• Efficient implementation very challenging.
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