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Motivation
Continuous-time quantum Monte Carlo methods (CT-QMC) are widely used to solve impurity models
in equilibrium [1]. However, they suffer from an inherent dynamical sign problem while treating the
nonequilibrium real-time dynamics [2, 3, 4]. Here we propose a method that alleviates the dynamical
sign problem in case of the single-orbital Anderson impurity model (AIM).

Model and method
The Hamiltonian of the time-dependent single-orbital AIM in a setup with two leads reads

H(t) = Hloc(t) +
∑
σ

[Hbath,σ(t) +Hhyb,σ(t)]

Hloc(t) =
∑
σ

Edσ(t)d†σdσ + U(t) d†↑d↑d
†
↓d↓

Hbath,σ(t) =
∑

α=−1,1

N/2∑
p

(
εpσ(t) + α

V(t)

2

)
c†αpσcαpσ

Hhyb,σ(t) =
∑

α=−1,1

N/2∑
p

(
Vpσ(t) c†αpσdσ + h.c.

)
.

The generating functional for all the time-dependent observables of the interest is the dynamical
partition function Z(β, tmax)

Z(β, tmax) = Tr
(
e−βH(0)T−e−i

∫ 0
tmax

dtH(t)T+e
−i

∫ tmax
0

dtH(t)
)

≡ Tr
(
TC e−i

∫
C
dsH(s)

)
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(
TC e−i

∫
C
ds(H−Hhyb↓)(s)e−i

∫
C
dsHhyb↓(s)

)
.

In contrast to the standard CT-HYB-QMC algorithm we expand Z perturbatively in in the powers of
Hhyb↓(s) only

Z(β, tmax) =
∞∑
k=0

(−1)k
∫ −iβ

0+

ds1· · ·
∫ −iβ
sk−1

dsk

∫ −iβ
0+

ds′1· · ·
∫ −iβ
s′k−1

ds′k

wloc+bath↑({sm}, {s′n})wbath↓({sm}, {s′n}).
-iβ

0 tmax=
↓

Z

Terms of the expansion are then stochastically sampled within a Monte Carlo simulation. Each term’s
contribution may be split into the dressed local weight wloc+bath↑ and the spin-down bath weight
wbath↓, which is evaluated easily due to Wick’s theorem

wbath↓ = Zbath↓ i
k det

[∑
αp

V ∗p↓(sm)gαp↓(sm, s
′
n)Vp↓(s

′
n)

]
m,n=1,...,k

,

where gαp↓(s, s
′) is a non-interacting bath Green function.

Evaluation of the dressed local weight - discretized bath

The novel aspect is the evaluation of the dressed local weight, which incorporates both local
and spin-up bath degrees of freedom. This auxiliary system is governed by the Hamiltonian
H0 = Hloc + Hbath↑ + Hhyb↑ and is effectively non-interacting since H0 conserves n↓ = 〈d†↓d↓〉.
Using the well-known result from determinant QMC [5] we get (for sk > s′k)

wloc+bath↑ = Trloc,bath↑

(
e−βH0(0)d†↓(sk)d↓(s

′
k) . . . d†↓(s1)d↓(s

′
1)
)

= e
−i

∫−iβ
s
k

ds Ed↓(s)
e
−i

∫ s′k
s
k−1

ds Ed↓(s) . . . e
−i

∫ s1
0+

ds Ed↓(s)

det
[
1 + u1(−iβ, sk)u0(sk, s

′
k)u1(s′k, sk−1) . . . u0(s1, s

′
1)u1(s′1, 0+)

]
,

where un↓ is a single-particle time-evolution matrix

un↓(s, s
′) = TC exp

−i ∫ s

s′
ds̄

 Ed↑(s̄)+U(s̄)n↓ V
∗
1 (s̄) ··· V ∗k (s̄)

V1(s̄) ε1↓(s̄) ··· 0
...

...
... 0

Vk(s̄) 0 0 εk↓(s̄)

 .

The computational cost is O(N3), where N is the size of the bath.

Evaluation of the dressed local weight - discretized time

Formally one can integrate out the bath levels and work directly with the hybridization function

∆↑(s, s
′) =

∑
αp

V ∗p↑(s)gαp↑(s, s
′)Vp↑(s

′)

The impurity spin-up Green function for a given MC configuration n↓(s) satisfies Dyson equation

G↑(s, s
′) = G0↑(s, s

′) + (G0↑ ◦∆↑ ◦G↑) (s, s′),

where
G−1

0↑ (s, s′) =

[
i
∂

∂s
− Ed↑(s)− U(s)n↓(s)

]
δ(s, s′).

One can discretize contour times si =
∑i−1
j=0 (∆s)j and obtain the local weight as a determinant in

the contour-time space in the limit ∆s→ 0

wloc+bath↑ = det [iG↑(si, sj)]i,j =

(
1 + e

−i
∫−iβ
0+

ds[Ed↑(s)+U(s)n↓(s)]
)

det [δij − (G0↑ ◦∆↑) (si, sj)]i,j .

The computational cost is O(N3
times) but does not depend on N . In principle, one can also introduce

retarded interaction U↑↓(s, s′) at no additional cost.

Measurement of current - discretized bath
The current to the left (α = −1 ≡ L) lead is given by

Iσ(t) = −2 Im
∑
p

Vpσ(t)
〈
c†Lpσdσ

〉
(t).

Since the spin-up subsystem is solved explicitly for each MC configuration, one has a direct access to
the relevant expectation values〈

c†αp↑d↑

〉
(t) =

〈
−
[
1 + u0/1(t, s̃i) . . . u1(s̃1, 0+)u1(−iβ, s̃2k) . . . u0/1(s̃i+1, t)

]−1

αp,d

〉
QMC

.

Here we consider the voltage quench from V(0) = 0 to V(t > 0) = 4 for
U(t) = 3 and 6. Each lead is composed of N/2 = 15 bath states εαpσ
equidistantly spaced around 0 in the interval of half-width D = 3. We
use the integrated impurity-bath coupling Γ =

πN |Vp|2
4D as energy unit.

The inverse temperature β = 2.
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Conclusions
• CT-1/2-HYB-QMC allows one to solve the finite-size single-orbital Anderson impurity model exactly

on twice as long time scales as within the standard CT-HYB-QMC.

• The average expansion order is reduced by a factor of 2, which decreases the computational burden
of the bath weight evaluations with respect to CT-HYB by 4.

• The computational complexity of the discretized bath algorithm is O(N3) as opposed to O(eN ) for
exact-diagonalization methods.

• The computational complexity of the discretized time algorithm is O(N3
times) and the extrapolation

∆s→ 0 shall be performed.

• CT-1/2-HYB can be extended to multiorbital problems with density-density interactions. However,
the increase in the time span that can be simulated is only n

n−1 , where n is the number of electronic
flavors (n = 2 for the single-orbital AIM).
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