

Machine Learning Green Functions from Perturbation Theories

Patryk Kubiczek

patryk.kubiczek@physik.uni-hamburg.de

I. Institute for Theoretical Physics, University of Hamburg

"The immense progress in computing power and the corresponding availability of large datasets ensure that machine learning will be an important part of the physics toolkit.

In the future, we expect machine learning to be a core competency of physicists much like linear algebra, group theory, and differential equations."

Mehta, Bukov, Wang, Day, Richardson, Fisher, Schwab: A high-bias, low-variance introduction to Machine Learning for physicists arXiv:1803.08823

See also: Carleo et al.: Machine learning and the physical sciences arXiv:1903.10563

Machine learning

- Goal: learn from data to predict or generate new data
- Predicting data ≠ fitting data
- Bias-variance trade-off:
 - Underfitting = high bias (model too simple)
 - Overfitting = large difference of in-sample and out-of-sample error (training dataset too small)

Applications in condensed matter physics: examples

Supervised learning	Unsupervised learning		
Classification of phases			
Carrasquilla, Melko: <i>Machine learning phases of matter</i> (2017) Broecker, Carrasquilla, Melko, Trebst: <i>Machine learning</i> <i>quantum phases of matter beyond the fermion sign problem</i> (2017)	Hu, Singh, Scalettar: <i>Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination</i> (2017)		
Monte Carlo speed-up	Poinforcomont loarning		
Liu, Qi, Meng, Fu: Self-learning Monte Carlo method (2017)	Reinforcement learning		
 Huang, Yang, Wang: Recommender engine for continuous- time quantum Monte Carlo methods (2017) Huang, Wang: Accelerated Monte Carlo simulations with restricted Boltzmann machines (2017) Shen, Liu, Fu: Self-learning Monte Carlo with deep neural networks (2018) 	Variational ansatz for many-body states Carleo, Troyer: Solving the quantum many-body problem with artificial neural networks (2017) Carleo, Nomura, Imada: Constructing exact representations of quantum many-body systems with deep neural networks (2018)		
"Smart interpolation"	Finding of driving protocols		
Arsenault, Lopez-Bezanilla, von Lilienfeld, Millis: <i>Machine learning for many-body physics: The case of the Anderson impurity model</i> (2014)	Bukov, Day, Sels, Weinberg, Polkovnikov, Mehta: Reinforcement Learning in Different Phases of Quantum Control (2018)		

Machine Learning Green Functions from Perturbation Theories

Anderson impurity model

6

$$H = \sum_{\sigma} \varepsilon \, d_{\sigma}^{\dagger} d_{\sigma} + U \left(d_{\uparrow}^{\dagger} d_{\uparrow} - \frac{1}{2} \right) \left(d_{\downarrow}^{\dagger} d_{\downarrow} - \frac{1}{2} \right) + \sum_{i\sigma} \varepsilon_{i} \, c_{i\sigma}^{\dagger} c_{i\sigma} + \sum_{i\sigma} V_{i} \left(d_{i\sigma}^{\dagger} c_{i\sigma} + c_{i\sigma}^{\dagger} d_{i\sigma} \right)$$

- Approximate perturbative methods of solution usually cheaper than exact
- Small discrete bath => ED solution: cheap
- Continuous bath => QMC solution: hard, in real-time very hard

	Weak coupling PT	Strong coupling PT	ED	QMC
Discrete bath	yes	yes	yes	
Continuous bath	yes	yes	no	

 Question 1: Can we (computer) learn to predict exact solutions from (complementary) perturbative solutions?

$$G_{\text{exact}} \approx \mathcal{F}(G_{\text{weak}}, G_{\text{strong}})$$
 (?)

Question 2: Can we (computer) learn continuous bath solutions from discrete
bath solutions? $\mathcal{F}_{cont.} \approx \mathcal{F}_{discrete}$ (?)

Perturbation Theories

Goal: calculate imaginary-time Green function for AIM

 $G_{\sigma} = -\left\langle d_{\sigma}(\tau) d_{\sigma}^{\dagger} \right\rangle$

Weak coupling: 3rd order PT in U

$$G = G_0 + G_0 * \Sigma * G$$

self-energy $\Sigma = \Sigma(G_0)$ diagrams:

Tsuji, Werner, PRB 88 165115 (2013)

Aoki et al. RMP 86 779 (2014)

- 1. Collect and pre-process the data.
- 2. Define the model and its architecture.
- 3. Choose the cost function and the optimizer.
- 4. Train the model.
- 5. Evaluate and *study* the model performance on the validation and test data.
- 6. Adjust the hyperparameters (and, if necessary, network architecture) to optimize performance for the specific dataset.

Mehta, Bukov, Wang, Day, Richardson, Fisher, Schwab: A high-bias, low-variance introduction to Machine Learning for physicists arXiv:1803.08823

1. Collect and pre-process data

Generated 10 000 sets of parameters

- impurity: $U \in [1, 8], \epsilon \in [-1, 1]$
- bath: half-bandwidth D ∈ [2, 8], N_{bath} ∈ {3, 4, 5}
 ⇒ ε_i ∈ [-1, 1], V_i ∈ [0.75, 1.25], i = 1, ..., N_{bath}
 ⇒ normalization ∑V_i² = 2DΓ / π, Γ = 1
 ⇒ centering ∑ε_iV_i² = 0 ⇒ rescaling ε_N ε₁ = 2D
- Data: 30 000 calculated weak (TRIQS) and strong coupling, and ED GFs (QuSpin)
 + 30 000 generated GFs from particle-hole symmetry (β = 1)
- Represent GF as a collection of $n_{\tau} = 51$ equidistant points $\tau_i \in [0, \beta]$
- Shift and rescale: $F(\tau) = (G(\tau) + 0.5) \cdot 2$

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{20000}]$$

$$\mathbf{x}_i = [F_i^{\text{weak}}(\tau_1), \dots, F_i^{\text{weak}}(\tau_{n_\tau}), F_i^{\text{strong}}(\tau_1), \dots, F_i^{\text{strong}}(\tau_{n_\tau})]$$

$$\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_{20000}]$$

$$\mathbf{y}_i = [F_i^{\text{ED}}(\tau_1), \dots, F_i^{\text{ED}}(\tau_{n_\tau})]$$

2. Define the model and its architecture

Model: Feed-Forward Deep Neural Network (Keras + TensorFlow)

- Number of hidden layers: 2 => 51.(102+1) + 51.(51+1) + 51.(51+1) = 10 557 parameters w, b
- Possible nonlinearities: tanh or ELU (why?)

3. Choose the cost function and the optimizer

- The parameters θ of model f are found by minimizing the cost function C on the dataset (X, Y)
- A common choice for regression problems is mean squared error

$$C(\mathbf{X}, \mathbf{Y}, \boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{y}_i - f_{\theta}(\mathbf{x}_i) \right]^2$$

To optimize the parameters θ of the neural network a stochastic gradient descent-type algorithm with learning rate η is used (MB = mini-batch)

$$\mathbf{v}_{t} = \eta \, \nabla_{\theta} C(\mathbf{X}_{MB(t)}, \mathbf{Y}_{MB(t)}, \boldsymbol{\theta}_{t})$$
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t+1} - \mathbf{v}_{t}$$

 Backpropagation algorithm exploits the layered structure of of neural networks to make gradient computation efficient

5. Evaluate and study the model performance on the test data

	Training Set (N = 14000)	Test Set (N = 6000)	Continuous Bath Set (N = 50)
Cost Function	7.11 · 10 ⁻⁷	7.62 · 10 ⁻⁷	14.13 · 10 ⁻⁷
Mean Absolute Error	0.000327	0.000334	0.000434
Max Error	0.005879	0.005880	0.004982
Max Boundary Condition Deviation	0.005173	0.004669	0.000414

6. Adjust the hyperparameters – grid search

Cost Function		Batch Size	Optimizer	Learning Rate	Activation Function	
0.000004	+-	0.000001	8	Nadam	0.0005	elu
0.000007	+-	0.000001	16	Adamax	0.0010	elu
0.000010	+-	0.000001	8	Nadam	0.0001	elu
0.000010	+-	0.000004	8	Adamax	0.0010	elu
0.000012	+-	0.000002	32	Adamax	0.0010	elu
0.000013	+-	0.000003	8	Adamax	0.0005	elu
0.000013	+-	0.000013	8	Nadam	0.0010	elu
0.000014	+-	0.000002	16	Adamax	0.0005	elu
0.000015	+-	0.000000	16	Nadam	0.0001	elu
0.000015	+-	0.000002	16	Nadam	0.0005	elu
0.000015	+-	0.000014	16	Nadam	0.0010	elu
0.000016	+-	0.000001	32	Adamax	0.0005	elu
0.000019	+-	0.000001	8	Adamax	0.0001	elu
0.000020	+-	0.000000	16	Adamax	0.0001	elu
0.000021	+-	0.000001	32	Nadam	0.0001	elu
0.000021	+-	0.000005	32	Nadam	0.0010	elu
0.000028	+-	0.000012	8	Nadam	0.0010	tanh
0.000029	+-	0.000004	8	Nadam	0.0005	tanh
0.000033	+-	0.000002	8	Adamax	0.0010	tanh
0.000036	+-	0.000022	32	Nadam	0.0005	elu

Test Set

τ

Continuous Bath Set

semicircular bath of width 2D

exact solution: CT-HYB-QMC (TRIQS)

τ

Bethe-lattice Dynamical Mean Field Theory

semicircular DOS of width 2D

exact solution: CT-HYB-QMC (TRIQS)

analytic continuation: SOM (TRIQS)

 $\beta = 1$

 $\beta = 20$

	Training Set (N = 14000)	Test Set (N = 6000)	Continuous Bath Set (N = 50)		Training Set (N = 64000)	Test Set (N = 16000)	Continuous Bath Set (N = 50)
Cost Function	7.11 · 10 ⁻⁷	7.62 · 10 ⁻⁷	14.13 · 10 ⁻⁷	Cost Function	5.83 · 10 ⁻⁵	5.88 · 10 ⁻⁵	16.33 · 10 ⁻⁵
Mean Absolute Error	0.000327	0.000334	0.000434	Mean Absolute Error	0.00292	0.00294	0.00432
Max Error	0.005879	0.005880	0.004982	Max Error	0.07042	0.05155	0.08857
Max Boundary Condition Deviation	0.005173	0.004669	0.000414	Max Boundary Condition Deviation	0.02193	0.01419	0.00327

- $n_{\tau} = 101$
- non-equidistant τ-grid
- more hidden layers
- larger dataset

Test Set

τ

Continuous Bath Set

semicircular bath of width 2D

exact solution: CT-HYB-QMC (TRIQS)

Conclusion

- Question 1*: Can a neural network learn to predict exact AIM GFs from weak and strong coupling GFs?
- Answer: Yes for small β , <u>unclear</u> for large β (at least for a discrete bath)
- Question 2*: Can a neural network trained on discrete bath AIM GFs predict continuous bath GFs (from weak and strong coupling GFs)?
- Answer: Yes for small β , probably no for large β
- Possible outlook: use convolutional neural networks (CNN) to predict real-time Green functions G(t, t')

Thank you for your attention!