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What is a superconductor?

The material which experiences a second order phase transition
(discontinuity in the derivative of the heat capacity) at Tc after
which

I It is perfectly conducting

I It (almost) completely repels the magnetic field
(Meissner-Ochsenfeld effect)

I Some magnetic flux may be quantized in units h/2e

I There is an energy gap in the excitations spectrum

Hint for theorists: the critical temperature Tc depends on the
lattice ion mass M (Tc ∼ 1/

√
M)

Could it have anything to do with the ion lattice?
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Occurence of superconductors
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BCS Theory

Theory of Superconductivity
J. Bardeen, L. N. Cooper, and J. R. Schrieffer
(University of Illinois in Urbana)
Phys. Rev. 108, 1175 (1957)

More than 10 000 citations
Consistent microscopic explanation of the superconducting state
Nobel Prize in 1972

(source: physics.illionois.edu)
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Atomic lattice vibrations

We assume the interatomic potential is quadratic in displacements
from the state of equilibrium.

Ri = R0
i + ui

Vions =
1

2

∑
i,j

V (Ri −Rj)

' 1

2

∑
i,j

V (R0
i −R0

j ) +
1

4

∑
i,j

(ui − uj)µ(ui − uj)ν
∂2V (R0

i −R0
j )

∂Rµ∂Rν

µ, ν = x, y, z
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Phonons

Phonon = normal mode of ion lattice vibration. Its amplitude
given by the Fourier transform of the single ions vibration.

uq =
1√
N

∑
i

e−iqR
0
iui

The Hamiltonian can be diagonalized and three polarization are
obtained

Vions = V0 +
∑
q,s

Mω2
qs

2
(uq)∗s(uq)s , s = 1, 2, 3

Hphonons =
∑
q,s

~ωqs

(
a†qsaqs +

1

2

)

uq =
∑
s

√
~

2Mωqs

(
a†−qs + aqs

)
nqs
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Normal modes of vibrations in a solid - example

Figure : Density of normal modes for Al (source: Fujita et al.)
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Full Hamiltonian

H = Helectrons +Hions +Helectrons−ions +Helectrons−electrons

In the second quantization:

He−i =

∫
d3rΨ†(r)

∑
i

V (r−R0
i − ui)Ψ(r)

'
∫
d3rΨ†(r)

∑
i

[
V (r−R0

i )− ui∇V (r−R0
i )
]

Ψ(r)

≡ H0
e−i +Helectrons−phonons

where the electron field operator Ψ(r) is a superposition of all
momentum anihilation operators

Ψ(r) =
1√
Ω

∑
k

eikrck
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Electron-phonon interaction Hamiltonian

If we express the electron-phonon interaction Hamiltonian He−p in
terms of momenta we obtain

He−p = −i
√
N
∑
k,q

Vqquqc
†
k+qck

where

Vq =
1

Ω

∫
d3r e−iqrV (r)

Now uq becomes an operator and is expressed via bosonic creation
and anihilation operators

uq =
∑
s

√
~

2Mωqs

(
a†−qs + aqs

)
nqs

Only the longitudinal mode gives non-zero contribution (further we
drop the subscript s)
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Electron-phonon interaction Hamiltonian

Eventually

He−p =
∑
k,q

Mq

(
a†−q + aq

)
c†k+qck

Mq = −i

√
~N

2Mωqs
qVq
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Fröhlich Hamiltonian

HF = Helectrons +Hphonons +Helectrons−phonons − const

=
∑
k

εkc
†
kck +

∑
q

~ωqa
†
qaq + λ

∑
k,q

Mq

(
a†−q + aq

)
c†k+qck

We want to treat the electrons and phonons as independent
degrees of freedom. In order to accomplish this we perform a
canonical transformation

H̃F = e−iλSHFe
iλS , S = S†

so that the interaction term vanishes in the first order of λ. The
effective second order interaction between the pair of electrons
caused by the exchange of virtual phonon turns out to be:

He−p−e =
1

2

∑
k,k′,q

|Mq|2
2~ωq

(εk+q − εk)2 − (~ωq)2
c†k′+qc

†
k−qckck′
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Second order electron-electron interaction

He−p−e =
1

2

∑
k,k′,q

|Mq|2
2~ωq

(εk+q − εk)2 − (~ωq)2
c†k′+qc

†
k−qckck′
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Effective electron-electron interaction

He−e =
1

2

∫ ∫
d3r1d

3r2 Ψ†(r1)Ψ†(r2)
e2

4πε0|r2 − r1|
Ψ(r2)Ψ(r1)

=
1

2

∑
k,k′,q

e2

ε0Ω

1

q2
c†k′+qc

†
k−qckck′

He−p−e =
1

2

∑
k,k′,q

|Mq|2
2~ωq

(εk+q − εk)2 − (~ωq)2
c†k′+qc

†
k−qckck′

V eff
k,k′ =

e2

ε0Ω

1

q2
+ |Mq|2

2~ωq

(εk+q − εk)2 − (~ωq)2

If |εk+q − εk| < ~ωq the potential can be attractive in the
momentum space!
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Interacting pair of electrons

Consider two electrons at the Fermi surface. Their energy is 2εF if
we don’t take into account the attractive interaction. Now, let’s
include it. We approximate the pair potential in the following way

V eff
k,k′ =

{
−V0 if εF < εk, εk′ < εF + ~ωD

0 otherwise

Let us separate the motion of the center of mass:

K = k1 + k2, p =
1

2
(k2 − k1)

R =
1

2
(r2 − r1), r = r1 + r2
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Interacting pair of electrons

The solution is of the form:

ψ(r1, r2) =
1

Ω
eiKR

∑
p

ape
ipr

The Schrödinger equation for coefficients ap(
εp+1

2
K + ε−p+1

2
K − E

)
ap =

∑
p′

εF<εk′1,k
′
2

<εF+~ωD

V0 ap′

can be solved self-consistently

1

V0
=

∑
k

εF<εk1,k2
<εF+~ωD

1

εp+1
2
K + ε−p+1

2
K − E
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Cooper pair

We seek bound state solutions (E < 2εF). For K = 0

1

V0
≈ N (εF)

∫ εF+~ωD

εF

dε

2ε− E
=

1

2
N (εF) ln

(
2~ωD + 2εF − E

2εF − E

)

E = 2εF −
2~ωD

e
2

V0N (εF) − 1

For any K

E ≈ 2εF −
2~ωD

e
2

V0N (εF) − 1
+
vF

2
K

This bound state is called a Cooper pair (size ∼ 10−4 cm). The
energy is non-analytical as a function of V0. The existence of such
a solution leads to the instability of the Fermi surface - the Fermi
liquid model breaks down.
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BCS ground state

Bardeen, Cooper, Schrieffer postulated the superconducting
ground state is a superposition of Fock states in which one particle
states are occupied in pairs (k ↑,−k ↓)

|Ψ0〉 =
∏
k

(
uk + vke

iφkc†k↑c
†
−k↓

)
|0〉

The real coeffcients uk, vk, φk will be obtained by the variational
method. In case of a Fermi liquid

uk =

{
0 if |k| < kF

1 if |k| > kF

vk =

{
1 if |k| < kF

0 if |k| > kF

and φk has no physical meaning
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Reduced Hamiltonian

H0 =
∑
k

εk

(
c†k↑ck↑ + c†k↓ck↓

)
−

∑
k,k′

|εk,k′−εF|
<~ωD

V0c
†
k↑c
†
−k↓c−k′↓ck′↑

W0 = 〈Ψ0 | H0 |Ψ0〉 =
∑
k

2εkv
2
k−

∑
k,k′

|εk,k′−εF|
<~ωD

V0 ukvkuk′vk′ cos(φk−φk′)

The phase has to be the same for all the pairs

φk = φk′ ≡ φ

and the energy does not depend on φ. The ground state breaks
the symmetry U(1) of the Hamiltonian.
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Variational approach

Let

v2
k =

1

2

1− εk − εF√
(εk − εF)2 + ∆2

k

 , u2
k =

1

2

1 +
εk − εF√

(εk − εF)2 + ∆2
k


Then

δ (W0 − εF〈N〉)
δ∆k

= 0 ⇔ ∆k =
∑
k′

|εk′−εF|
<~ωD

V0
∆k′

2
√

(εk′ − εF)2 + ∆2
k′

≡ ∆

By integration we obtain

∆ =
~ωD

sinh
(

1
V0N (εF)

)
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Coherence factors
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Ground state energy and excitation spectrum

Knowing uk, vk we can finally calculate the ground state energy:

W0 =
∑
k

εk<εF

εk −
2N (εF)(~ωD)2

e
2

V0N (εF) − 1
= WFermi liquid −

2N (εF)(~ωD)2

e
2

V0N (εF) − 1
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Excitations spectrum

Excited states are those in which there are some unpaired
’electrons’. If we exclude one pair (k ↑,−k ↓) from the sum
determining W0 and add one single electron energy we convince
ourselves that it increases the energy of the system by

Ek =
√

(εk − εF)2 + ∆2 + εEF

which is a single excited particle energy.
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Energy gap temperature dependence

By minimizing the free energy F = W − TS − εFN we obtain the
temperature dependence of the energy gap ∆ = ∆(T )

kBTc ≈ 1.13 ~ωD e
− 1
V0N (εF) ≈ 1.13 ∆(0)
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Repetition

I Due to the electron-phonon interaction electrons can be
effectively attracted to each other

I The electrons bind forming singlet Cooper pairs (k ↑,−k ↓)
I The ground state is a coherent state: does not conserve the

number of particles and breaks the U(1) symmetry

I The excited states spectrum is separated from the ground
state by the energy gap ∆(T )
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Plausible hypotheses

I Due to the energy gap in the excitation spectrum charge
carriers (cooper pairs) are not scattered - superconductivity

I The magnetic field destroys the superconducting state. The
critical field:

WFermi liquid −W0 =
ΩB2

c

2µ0
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