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What is a superconductor?

The material which experiences a second order phase transition
(discontinuity in the derivative of the heat capacity) at T, after
which

» It is perfectly conducting

v

It (almost) completely repels the magnetic field
(Meissner-Ochsenfeld effect)

» Some magnetic flux may be quantized in units h/2e
» There is an energy gap in the excitations spectrum

Hint for theorists: the critical temperature T, depends on the
lattice ion mass M (T, ~ 1/v M)
Could it have anything to do with the ion lattice?
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Occurence of superconductors

Li |Be* B |[C'|N O | Ne
Na | Mg Al [Si*| P S | Ar
T =11
B.-| 10
K |Ca|[Sc|Ti| V |Cr|Mn|Fe|Co|Ni|Cu|Zn | Ga |Ge*| As | Se* | Kr
0.39 | 5.38 0.87 | 1.09
100 | 1420 53 | 51
Rb| Sr | Y| Zr | Nb(Mo| Te |[Ru|Rh|Pd |Ag [Cd | In | Sn |Sb* | Te* | Xe
0.54 920 0.92 | 7.77 | 0.51 3.40 [3.40 [ 3.72
47 | 1980 95 |1410| 70 293 | 309
Cs*(Ba*| La | Hf | Ta | W |Re |Os | Ir |Pt*| Au ([Hg | T1 | Pb | Bi* | Po | Rn
6.00 4.48 | 0.01 | 1.69 | 0.65 | 0.14 4.15 [2.39 | 7.19
1100 830 | 1.07 | 198 | 65 | 19 412 | 171 | 803
Fr | Ra| Ac
Ce*| Pr | Nd | Pm |Sm | Eu [ Gd| Th | Dy | Ho | Er | Tm| Yb | Lu
Th|Pa| U | Np|Pu |Am|(Cm| Bk | Cf | Es | Fm | Md| No | Lw
1.36 | 1.4 | 0.68
1.62
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BCS Theory

Theory of Superconductivity

J. Bardeen, L. N. Cooper, and J. R. Schrieffer
(University of lllinois in Urbana)

Phys. Rev. 108, 1175 (1957)

More than 10 000 citations

Consistent microscopic explanation of the superconducting state
Nobel Prize in 1972

Bardeen Cooper Schriefier

BCS Theory

(source: physics.illionois.edu)
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Atomic lattice vibrations

We assume the interatomic potential is quadratic in displacements
from the state of equilibrium.
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Phonons

Phonon = normal mode of ion lattice vibration. Its amplitude
given by the Fourier transform of the single ions vibration.
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The Hamiltonian can be diagonalized and three polarization are
obtained
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Normal modes of vibrations in a solid - example
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Figure : Density of normal modes for Al (source: Fujita et al.)
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Full Hamiltonian

H= Helectrons + Hions + Helectrons—ions + Helectrons—electrons

In the second quantization:

He ;= /di’w Uli(r)Y V(r—R) - u)¥(r)

~ /d%« wi(1) S [V(r = RY) - w; ¥V (r — RY)] ¥(r)

i
— 170
= He—i + Helectronsfphonons

where the electron field operator U(r) is a superposition of all
momentum anihilation operators

U(r) = \/15 Z T ey
k
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Electron-phonon interaction Hamiltonian

If we express the electron-phonon interaction Hamiltonian H._,, in
terms of momenta we obtain

He—p — _Z\/N Z quUqclt+qu
k,q
where

1 4
Vq= a /d3r e TV (r)

Now uq becomes an operator and is expressed via bosonic creation
and anihilation operators

Z QMqu (aT—qs + aq5) Ngs

Only the longitudinal mode gives non-zero contribution (further we
drop the subscript s)
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Electron-phonon interaction Hamiltonian

Eventually
H._, = Z Mgy (aT_q + aq) cLchk
k,q

hN
Mg = —i V.
17 TN 2wy, 1O
-~$h-
q
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N
Frohlich Hamiltonian

HF = Helectrons + thonons + Helectronsfphonons — const
—Zekckck+2ﬁwqa aq—l—)\ZM ( +aq)cL+qk

We want to treat the electrons and phonons as independent
degrees of freedom. In order to accomplish this we perform a
canonical transformation

_LT:IF _ e*i)\SHFei)\S .S = ST
so that the interaction term vanishes in the first order of A. The

effective second order interaction between the pair of electrons
caused by the exchange of virtual phonon turns out to be:

He p—e — Z | 2h°;q 2CL,+ cl_qckck/
kk’,q €k+q - €k) - (hwq) a
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Second order electron-electron interaction
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Effective electron-electron interaction

62

Hefe = //d3T1d37‘2 \IJT(I'l)\I/ (1‘2) \If(rg)\lf(rl)

dmeg|ry — 1y

1
= Z CL,+ CL Ck Ck’
EOQ q q q

kk/
2hwq T 1
e p—e — Z | _ 2 2Ck/+qck7quCk/
kk’,q Ek) (hWQ)
2
ec 1 2hw
Veff/ — — 1 |M 2 a
e = e M o a0~ (g?

If |ext+q — €k| < hwq the potential can be attractive in the
momentum space!
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-
Interacting pair of electrons

Consider two electrons at the Fermi surface. Their energy is 2¢r if
we don't take into account the attractive interaction. Now, let's
include it. We approximate the pair potential in the following way

yeft { -V if ep < ek, e < €p + Awp
kk =

0 otherwise

Let us separate the motion of the center of mass:
1

K=k +ky, p= §(k2—k1)

1
Rzi(rg—rl), r=r)+ry
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Interacting pair of electrons

The solution is of the form:

w(l‘l, I'Q ZKR Z ape
The Schrodinger equation for coefficients ap,

(Ep—i-%K T prik — E) ap = E , Voay
/

6F<6kllyk/2
<ep+hwp
can be solved self-consistently
1 1
Vo ©  Cp+ik T pilk — B
€F<€kq ko
<ep+hwp
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Cooper pair

We seek bound state solutions (£ < 2¢r). For K =0

1 erthep g 1 2hwp + 2¢p — E
Vz./\/(q:)/ < —QN(eF)ln< D+ e )

0 €F 2¢ — F QEF—E
2h
B 2en
eVoN(Gr) — 1
For any K
2hw
Ez2eF—27D+%FK

eVoNTer) — 1

This bound state is called a Cooper pair (size ~ 10~* cm). The
energy is non-analytical as a function of V. The existence of such
a solution leads to the instability of the Fermi surface - the Fermi
liqguid model breaks down.
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BCS ground state

Bardeen, Cooper, Schrieffer postulated the superconducting
ground state is a superposition of Fock states in which one particle

states are occupied in pairs (k 1, -k )
| Wg) = H (uk + vkei‘f’kcltT ki) |0)
Kk

The real coeffcients uy, vy, ¢ will be obtained by the variational
method. In case of a Fermi liquid

= {

o — 1 if k| < kp
KT 00 if |k >k

if k| < kp
if |k| > kp

_ O

and ¢y has no physical meaning
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Reduced Hamiltonian

Hy = Z €k (CLTCH + CLClq) — Z %CLTCik¢C*k/J’Ck/T
k kK’
|€k,k'—EF|
<hwp

Wo = (W] Ho [Wo) =) 2exvi— > Vo ucvktiervie cos(dx—ou)
k KK’
‘Ek,k/_EF|
<hwp

The phase has to be the same for all the pairs

Pk = P = ¢

and the energy does not depend on ¢. The ground state breaks
the symmetry U(1) of the Hamiltonian.
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Variational approach

Let
1 — 1 —
1)12{:7 1-— k¥ ,ui:§ 1+ e F
\/(ek —€ep)? —|—A12( \/(ek —EF)2—|—A12{
Then
(5 (W(] — 6F<N>) Ak’

0Ak K 2\/(6k/ — EF)2 + A2,
ey —€r|
<hwp
By integration we obtain
hwp

A= _ ™D
sinh (W@))
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Coherence factors
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Ground state energy and excitation spectrum

Knowing uy, vk we can finally calculate the ground state energy:

2 2
Wy = Z €k — M = Wrermi liquid — M

k eVoN(er) — ] eVoN(er) — 1
ek <€ER
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Excitations spectrum

Excited states are those in which there are some unpaired
‘electrons’. If we exclude one pair (k 1, —k |) from the sum
determining W, and add one single electron energy we convince
ourselves that it increases the energy of the system by

Ek =V (ex — er)? + A2 4 e,

which is a single excited particle energy.

Ex
A
€r
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Energy gap temperature dependence

By minimizing the free energy F' =W — T'S — eg N we obtain the
temperature dependence of the energy gap A = A(T)
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Repetition

» Due to the electron-phonon interaction electrons can be
effectively attracted to each other

» The electrons bind forming singlet Cooper pairs (k T, —k |)

» The ground state is a coherent state: does not conserve the
number of particles and breaks the U(1) symmetry

» The excited states spectrum is separated from the ground
state by the energy gap A(T)
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Plausible hypotheses

» Due to the energy gap in the excitation spectrum charge
carriers (cooper pairs) are not scattered - superconductivity
» The magnetic field destroys the superconducting state. The

critical field:
QB2

240

WEermiliquid — Wo =
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