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Chapter 1

Introduction

Analysis of multi-particle angular correlations in particle and ion collisions provides detailed
information on the properties of particle production and allows one to reconstruct events
structure in phase space. In 2010 CMS Collaboration reported on an enhanced long-range in
pseudorapidity, zero-angle correlation in high-multiplicity pp collisions. This type of corre-
lation resembles the one observed in heavy-ion collisions due to hydrodynamic expansion of
colliding matter. The goal of this thesis is to verify whether the phenomenon discovered by
CMS could have the same origin under several assumptions about proton internal structure
and the mechanism of pp collision.

In Chapter 2 basic terms used to describe particle collisions and de�nition of two-particle
correlations are introduced. Then, a brief overview of the ridge e�ect is given.

Chapter 3 discusses a possible hydrodynamic explanation of ridge-like correlation by the
existence of so called elliptic �ow. The hypothesis of a relation between the eccentricity of
matter in the initial stage of collision and the elliptic �ow in the �nal stage is presented.

Chapter 4 introduces the Glauber model traditionally used for modelling heavy-ion collisions
and the formula for eccentricity in Glauber-described collisions.

In Chapter 5 a simple model of internal structure of proton inspired by renormalization group
procedure for e�ective particles is proposed. In this model proton consists of three Gaussian-
like e�ective quarks and a central Gaussian-like gluon body.

The procedure and results of Monte Carlo calculation of expected elliptic �ow are the contents
of Chapter 6.

The discussion of results and summary are in Chapter 7.
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Chapter 2

Ridge e�ect

2.1. De�nition of variables

Each collision of two protons is called an event. In inelastic collisions several new particles
may be produced. The number of particles produced in any particular collision is called its
multiplicity.

After particles produced in a collision hit detectors it is possible to determine the collision
point, called the primary vertex. Then one can characterize every detected particle by provid-
ing the azimuthal angle φ, the polar angle θ and the value of transverse to the beam direction
(z) momentum pT (Fig. 2.1). Instead of the polar angle it is convenient to use a variable
named pseudorapidity. Pseudorapidity η is de�ned as:

η = − ln [tan (θ/2)] (2.1)

For massless or in the limit of ultra-relativistic particles pseudorapidity coincides with rapidity
y = artanh(vz/c) which is additive with respect to boosts along z direction. That fact makes
comparison of data from di�erent reference frames straightforward [32, 33].

Figure 2.1: Side and front views of an event, with respect to the beam pipe. The trajectories
of arbitrary two particles A and B are presented.

2.2. Two-particle correlations

In order to calculate two-particle correlations all the events are divided into several multiplicity
bins. One can then determine the correlations for any single multiplicity bin or, by averaging,
for all of them.
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The normalized particle-pair density function SN of relative azimuthal angle ∆φ = |φA−φB|
and pseudorapidity di�erence ∆η = |ηA − ηB| is constructed by combining all the pairs
of produced particles at one particular event of multiplicity N belonging to a particular
multiplicity bin:

SN (∆η,∆φ) =
1

N(N − 1)

d2Npairs

d∆η d∆φ
(2.2)

The de�nition of two-particle correlation includes the background pair density in order to
neutralize arti�cial correlations resulting from possible imperfections of the detectors. The
background pair density function BN is constructed by combining particles from di�erent
events belonging to the same multiplicity bin:

BN (∆η,∆φ) =
1

N2

d2Nmixed events

d∆η d∆φ
(2.3)

Two-particle correlation R is then de�ned as follows [1]:

R(∆η,∆φ) =

〈
(〈N〉 − 1)

(
SN (∆η,∆φ)

BN (∆η,∆φ)
− 1

)〉
bins

, (2.4)

where 〈N〉 is the average multiplicity in a given bin and 〈. . .〉bins denotes averaging over bins.

2.3. CMS data on pp collisions at
√
s = 7 TeV

The correlation function extracted from the data on charged particles produced in pp collisions
at
√
s = 7 TeV in CERN by CMS Collaboration (Fig. 2.3) exhibits several characteristic

features [1].

1. The peak at (∆η,∆φ) = (0, 0) is caused by jets of hadrons (Fig. 2.2). This is a conse-
quence of the particle production mechanism in which two energetic particles of opposite
momenta are produced being the sources of collimated radiation in their movement di-
rection.

Figure 2.2: An example of two jets of collimated hadrons produced in pp collision

2. The elongated structure at ∆φ = 2π is a signature of momentum conservation in particle
production processes.

3. The new and previously not observed in pp collisions feature is the ridge-like structure
along ∆φ = 0. This 'ridge e�ect' is best visible for high-multiplicity events (N ≥ 110)
in the intermediate transverse momentum range (1 GeV/c < pT < 3 GeV/c). A similar
correlation was observed in proton-lead collisions [2].
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Figure 2.3: Two-particle charged hadron correlations at
√
s = 7 TeV measured by the CMS

experiment: (a) for minimum bias events (averaged over all multiplicities), (b) for minimum
bias events and the intermediate transverse momentum range, (c) for high-multiplicity events,
(d) for high-multiplicity events and the intermediate transverse momentum range [1]

2.4. Possible ridge e�ect explanations

There is no obvious reason why such a long-range in pseudorapidity correlation should occur.
There are many theoretical interpretations of the phenomenon which in general belong to one
of the two categories of initial or �nal state e�ects [3, 4, 5, 6].

It is possible to explain the ridge e�ect by the initial state dynamics in the framework of the
color glass condensate e�ective theory [7]. The ridge structure in that case would originate
from the ladder diagrams contribution to the gluonic interactions, which is non-negligible in
case of gluon saturation expected to take place in high-multiplicity events.

The other type of possible explanation is based on the assumption of multiple interactions of
produced particles in the collision �nal state. The ridge-like correlation in that case originates
from the elliptic component of the expanding matter collective �ow. This e�ect was previously
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observed in heavy-ion collisions and was well described hydrodynamically. Such an idea is
presented e.g. by [8, 9, 10]. The more detailed discussion of this explanation, being the
working hypothesis of this thesis, is presented in Chapter 3.

This brief review is by no means complete as the number of theoretical models for the ridge
e�ect is large. At the moment the data from CMS seems not to be precise enough to distinguish
between them as the most are able to explain the phenomenon. Thus, according to [6] high-
multiplicity pp collisions can be regarded now as Pandora's box hiding information that could
possibly lead to new insights on hadron structure.
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Chapter 3

Hydrodynamic description

3.1. Elliptic �ow

Ridge e�ect has been observed in relativistic heavy-ion collisions. The plausible explanation
was the collective �ow of hot and dense medium created during a collision and having an
initial spatial anisotropy. The observation of elliptic �ow in heavy-ion collisions is considered
an evidence that this medium is a quark-gluon plasma behaving like a strongly coupled liquid
with small viscosity [33].

The interaction volume of two ions can be anisotropic in xy plane for two reasons: a non-zero
impact parameter b (Fig. 3.1) and an event-by-event �uctuating, non-uniform distribution of
the nucleons in the colliding nuclei. If a hydrodynamical evolution of this medium is assumed,
the initial spatial anisotropy is transferred by pressure gradient into the similar anisotropy
in �nal momenta. The azimuthal angle anisotropy in single-particle momentum yield can be
decomposed into Fourier series [11]:

d3N

d2pTdη
=

d2N

2πpTdpTdη

(
1 + 2

∞∑
n=1

vn(pT, η) cos [n(φ− ΦRP)]

)
(3.1)

where vn(pT, η) = 〈cos [n(φ− ΦRP)]〉. The second coe�cient v2 is called elliptic �ow coe�-
cient. The reaction plane angle ΦRP de�nes a long and a short axis of the elliptical shape of
the initial spatial distribution. When one takes into account �uctuations of nucleons' posi-
tions a participant plane angle ΦPP must replace ΦRP and they do not need to coincide with
each other. The methods for determining ΦRP and ΦPP are presented in [33].

Figure 3.1: Elliptic shape of interacting matter. For isotropic densities of ions ΦRP = ΦPP.
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There is a crucial relation between vn and two-particle azimuthal correlation [11]:

〈cos (n∆φ)〉 =
〈
ein∆φ

〉
=
〈
ein(φA−ΦRP)e−in(φB−ΦRP)

〉
= v2

n + δn (3.2)

where ∆φ = φA − φB is the di�erence between particle A and B azimuthal angles and δn is
a non-�ow correlation. Here a negligibility of δ2 is assumed. A non-zero v2 would manifest
itself in two-particle correlation in a form of ridges in ∆φ = 0 and ∆φ = π as cos(2∆φ) is
positive in these regions. Such ridges are present in the CMS data (Fig. 2.3) and assuming
the existence of elliptic �ow it is possible to extract from it η-integrated v2 coe�cients for
di�erent pT . Such analysis was done by Bo»ek [9] and its results are presented in Fig. 3.2.
However, the elliptic �ow correlations are subleading and the necessity to propose a model
for the dominant e�ects makes such procedure unambiguous

Figure 3.2: Elliptic �ow v2(pT) for the four multiplicity classes extracted from the CMS data
[9]

3.2. Relation between elliptic �ow and initial eccentricity

It is very appealing to assume that there is some relationship between the initial spatial
anisotropy of colliding matter called eccentricity and the �nal momentum anisotropy being
the elliptic �ow. The eccentricity is ε de�ned as:

ε =
σ2
y′ − σ2

x′

σ2
y′ − σ2

x′
, (3.3)

where

σ2
x′ =

〈
x′2
〉
−
〈
x′
〉2

σ2
y′ =

〈
y′2
〉
−
〈
y′
〉2

and x′, y′ are x, y rotated by angle ΦRP (or ΦPP) such that x′ and y′ always correspond
respectively to the short and the long axis of the elliptical shape (Fig. 3.1).
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The result of the hydrodynamic calculations in [12] is that the pT - and η-integrated v2 as
a function of the mean value of ε may be roughly approximated by the formula:

v2

ε
=
(v2

ε

)hydro 1

1 +K/K0
(3.4)

where (v2/ε)
hydro = 0.3, the ideal hydrodynamics limit value, and K0 = 0.7. Knudsen number

K = λ/R is a ratio of mean free path λ of partons constituting the medium to the transverse
size R of the medium. Non zero K corresponds to the case of not completely thermalized
system, while in the limit of high density of partons and high partonic cross section when
K = 0 the ideal hydrodynamic limit is obtained. Knudsen number is approximated by the
formula:

K =
S

σgg cs
dN
dy

, (3.5)

where σgg = 4.3 mb is a cross section for parton-parton interaction, cs = 1/
√

3 is a theoretical
speed of sound in partonic medium, dN/dy is produced particle multiplicity at zero rapidity
and S is a mean transverse size of the system:

S = 4πσx′σy′ (3.6)

All the numbers provided above reproduce well the data on heavy-ion collisions with Glauber
initial conditions (Chapter 4).

It is not known whether quark-gluon plasma can be produced in pp collisions or whether
hydrodynamics is applicable in such small systems. Nevertheless, the goal of the thesis is
to build a model for the eccentricity ε and compare v2 it implies according to (3.4) with v2

extracted from the data.

What is worth noticing is that the eccentricity in pp collisions can be generated in two ways.
Besides the obvious one due to non-zero impact parameter there can also be anisotropy gen-
erated by non-trivial internal proton's structure. In that case one needs to determine the
participant plane angle ΦPP in each event. However, this step can be omitted by use of
an improved de�nition of eccentricity. The detailed discussion of such a calculation of the
eccentricity is the topic of Chapter 4.
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Chapter 4

Estimation of colliding matter

eccentricity

4.1. Glauber model

There exists a standard technique for describing the geometry of heavy-ion collisions. The
analogous technique is used in this thesis for pp collisions, the essence of the analogy being
the correspondence of nuclei and nucleons respectively with protons and partons constituting
proton.

The aforementioned technique is based on the Glauber model. The original quantum-mechanical
model was proposed by Glauber in 1958 [13]. It enabled one to calculate the phase shifts in
scattering of ions. The Glauber treats the collision of two composite nuclei (protons) as a su-
perposition of collisions of the nucleons (partons) they are made of. Its main assumptions
are:

• the interaction between the constituent particles during the collision is negligible,

• the constituents move along straight lines during the collision,

• the scattering is mostly in the forward direction.

In this thesis the classical limit of the Glauber model is used in order to estimate the eccen-
tricity of colliding matter. This simpli�ed model, known as wounded nucleons model, was
introduced by Biaªas, Bªeszy«ski and Czy» in 1976 [14].

The input information to the wounded nucleon model are the positions of nucleons in the
nuclei and nucleon-nucleon cross sections. The output is the inelastic nucleus-nucleus cross
section and the number density of nucleon-nucleon collisions. These collisions are assumed to
be the source of particles forming the matter which is evolving hydrodynamically in the later
part of collision. It is the collision density that is used to estimate the density of interaction
volume which allows one to calculate its geometrical quantities [15].

The �rst step of the Glauber model is to project the density of constituent matter ρ(x, y, z)
normalized to the mass number NA onto the plane perpendicular to the beam direction:

TA(x, y) =

∫ ∞
−∞

ρ(x, y, z)dz (4.1)
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The density of nucleon-nucleon collisions is then given by the formula:

ncoll(x, y; b) = σNN TA(x− b

2
, y)TB(x+

b

2
, y), (4.2)

where σNN is a nucleon-nucleon cross section and b is the impact parameter vector.

In order to obtain the total number of nucleon-nucleon collisions one needs to integrate the
above formula:

Ncoll(b) = σNN

∫
dx dy TA(x− b

2
, y)TB(x+

b

2
, y) (4.3)

Glauber model is used to describe produced particle multiplicities in heavy-ion collisions. One
postulates that the multiplicity per impact parameter N(b) is proportional to the number of
binary collisions or to the number of wounded nucleons (i.e. the ones which collided with at
least one nucleon from the other nucleus).

The leading mechanism for particle production in pp collisions are mini-jets caused by partonic
interactions so it is postulated in this thesis that the number of produced particles scales with
the number of parton-parton collisions:

N(b) = αNcoll(b) (4.4)

If the mean multiplicity of collisions is measured and the mean number of binary collisions is
calculated the proportionality constant α can be determined.

The di�erential inelastic cross section may be expressed as [15, 33]:

dσ

db
= 2πb

[
1−

(
1− Ncoll(b)

NANB

)NANB
]

(4.5)

Figure 4.1: Side and beam-line view of colliding particles (s = (x, y)) [15]

4.2. Eccentricity calculation

The basic de�nition of eccentricity was already introduced by (3.3). That de�nition is useful
if the short and the long axis of the elliptic shape (x′ and y′) are known. It is reasonable that
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for an arbitrary matter distribution they should maximize the value of σ′y and minimize σ′x.
Eccentricity obtained in this way is called participant eccentricity and is given by formula
(4.6) for any choice of x and y [16]. From now on it will serve as the de�nition of eccentricity:

ε =

√(
σ2
y − σ2

x

)2
+ 4σ2

xy

σ2
y + σ2

x

, (4.6)

where

σ2
x =

〈
x2
〉
− 〈x〉2

σ2
y =

〈
y2
〉
− 〈y〉2

σ2
xy = 〈xy〉 − 〈x〉 〈y〉

and the average values are weighted by the density of nucleon-nucleon collisions ncoll(x, y; b).
Similarly, the transverse area of interaction introduced by (3.6) can now be calculated by the
formula:

S = 4π
√
σ2
xσ

2
y − σ2

xy (4.7)

One needs to perform a calculation of the eccentricity and transverse size for each event
separately.
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Chapter 5

Model of proton's internal structure

5.1. Concept of e�ective quarks

There are two distinct pictures of proton's internal structure: 1) proton built from three
"constituent" quarks and 2) proton containing point-like partons: "current" quarks and glu-
ons. The �rst picture arises from its ability to account for hadronic spectra, while the second
explains well the results of hard scattering experiments. Renormalization group procedure
for e�ective particles (RGPEP) o�ers a bridge between these points of view suggesting that
the e�ective size of constituent quark can strongly depend on the energy scale used to probe
proton [17]. The larger the momentum transfer Q in partonic collisions, the smaller particles
are required for a simple description of observables. For Q = ΛQCD, the characteristic energy
for strong interactions, quarks can even be as big as whole proton (Fig. 5.1). One should
note that the overlap of big quarks makes proton white and in case of smaller quarks locally
white gluon medium (gluons and the sea of quark-antiquark pairs) �lls proton in.

Figure 5.1: RGPEP picture of proton at energy scale Q = ΛQCD and Q > ΛQCD [17].

5.2. Model of proton's density pro�le

In this thesis a simple model of proton inspired by the e�ective quark picture is analyzed. Pro-
ton is assumed to consist of three e�ective quarks, homogeneously charged two ups (+2/3 e)
and one down (-1/3 e), and a gluon body of certain radii. The e�ective quarks and the gluon
body are clusters of partons which is in resemblance with known two stage models [18, 19, 20]
used to explain the shape of deep inelastic scattering structure functions.
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The parameters of the model are:

• Ng - the total number of partons in a proton,

• κ - the ratio of the number of partons in the gluon body to Ng

• rq - radius of the e�ective quark,

• rg - radius of the gluon body,

• RP - radius characterizing e�ective quarks' distribution in proton.

The partons' number densities (parton densities) of the e�ective quark and the gluon body
are assumed to be 3D isotropic Gaussian functions:

ρq(r) = (1− κ)
Ng

3

1

(2π)3/2 r3
q

e−r
2/2r2q (5.1)

ρg(r) = κNg
1

(2π)3/2 r3
g

e−r
2/2r2g (5.2)

One can see from (5.1) that each e�ective quark is expected to carry the same number of
partons.

The root-mean-square value of the Gaussian distribution is equal to its variance times
√

3.
Quark radius rq should than be compared to the proton radius rp in the same parametrization.
The rms charge radius of proton Rrms = 0.88 fm is known from experiment, thus:

rp =
Rrms√

3
≈ 0.5 fm, (5.3)

RGPEP suggests that when quark radii correspond to the proton radius then no central
gluon body is needed to describe proton. A simple formula for κ being in agreement with this
observation which will be used for calculations is:

κ = 1− rq
rp

(5.4)

In the center of mass frame the parton density of the proton is given at point r by the
expression

ρp(r; r1, r2, r3) =

3∑
i=1

ρq(r− ri) + ρg (r) , (5.5)

where r1, r2, r3 are some positions of three e�ective quarks �xed during a collision satisfying
the relation:

r1 + r2 + r3 = 0 (5.6)

For simplicity the Gaussian probability distribution of the e�ective quarks' positions is used:

P (r1, r2, r3) =
1

[(2π)3/2R3
P ]3

e−(r21+r22+r23)/2R2
P , (5.7)

where ri = |ri|. It is reasonable to assume that the radius rg of gluon body which is responsible
for binding quarks is no smaller than the radius of quarks' distribution RP . Hereafter, the
equality of them is assumed.
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The model should reproduce the known rms charge radius of proton which is the average of
many measurements. When the proton density is averaged over e�ective quarks' positions
with the Gaussian distribution (5.7) the following constraint is obtained:

r2
p = R2

P + r2
q (5.8)

No e�ective quarks larger than the proton itself can be considered in this model.

One should note that the use of Gaussian functions greatly simpli�es all the necessary inte-
gration over z as the integral of the 3D Gaussian over one of its variables is 2D Gaussian.
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Chapter 6

Monte Carlo simulation

6.1. Procedure

Each collision of protons within the model introduced in Chapter 5 is characterized not only
by impact parameter but also by the positions of six e�ective quarks. In consequence, when
calculating expected values of quantities characterizing pp collisions one needs to average over
the space of all the possible con�gurations of two protons. For each impact parameter b the
following procedure was carried on:

1. Proton thickness function (4.1) is calculated by integrating (5.5) over variable z.

2. Thickness function does not depend on z -components of e�ective quarks positions so
the distribution of quarks in proton (5.7) is z-integrated.

3. According to the probability distribution from step 2, x and y coordinates for each of 3
quarks in proton A are generated (6 numbers at total). The generated con�guration has
to satisfy the center-of-mass relation (5.6) so each of the quark 2D position is shifted
by a vector −(sA1 + sA2 + sA3 )/3.∗

4. Step 3 is repeated for proton B.

5. The collision density is now determined according to (4.2) with the protons' densities
being separated by the impact parameter b along x -axis (Fig. 6.1). Instead of nucleon-
nucleon cross section σNN , parton-parton cross section σgg is used.

Figure 6.1: 2D projection of a sample event

6. An eccentricity and other quantities of the given con�guration are calculated.

∗Vector sji consists of x and y coordinates of ith quark in j th proton (i = 1, 2, 3, j = A, B).
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7. The steps 3-6 are repeated su�ciently many times to estimate the mean values of inter-
est. The number of necessary iterations was determined by demanding that the results
�uctuate no more than 1% in consequent calculations.

One of the outputs of the procedure described above is the inelastic pp cross section cal-
culated within the Glauber model by integrating (4.5) (with proton con�guration Σ =
(sA1 , s

A
2 , s

A
3 , s

B
1 , s

B
2 , s

B
3 ) dependence added) over all impact parameters and quarks' positions:

σpp =

∫
· · ·
∫ ∫ ∞

0

dσpp
db

(b,Σ) db d12Σ, (6.1)

where

d12Σ = P (sA1 , s
A
2 , s

A
3 )P (sB1 , s

B
2 , s

B
3 )

3∏
i=1

d2sAi

3∏
i=1

d2sBi (6.2)

and P (s1, s2, s3) is the 2D probability distribution obtained by integrating (5.7) in step 2. The
integration over Σ is being done by means of Monte Carlo sampling. It is not possible to solve
it analytically because dσpp

db depends on Σ only through Ncoll which is given by a non-trivial
expression. All the relative positions of the e�ective quarks have to be taken into account so
the integral dimension cannot be reduced.

The �rst step was to determine Ng by the demand of reproducing the experimentally known
inelastic cross section of 60 mb for

√
s = 7 TeV [21]. The parton-parton cross section σgg was

assumed to be 4.3 mb, the same value as in (3.5). For each set of parameters the bisection
method was used in order to return the value of Ng. In each step of the bisection σpp as
a function of Ng was calculated with 30 000 Monte Carlo iterations. The bisection procedure
terminated when σpp equalled 60 mb with 1% accuracy.

In the second step the mean number of collisions in an event 〈Ncoll〉 was calculated with 30 000
Monte Carlo samples:

〈Ncoll〉 =
1

σpp

∫
· · ·
∫ ∫ ∞

0
Ncoll(b,Σ)

dσpp
db

(b,Σ) db d12Σ (6.3)

Knowing that the minimum bias inelastic multiplicity for
√
s = 7 TeV is 30 [22] the constant α

from (4.4) could be determined. The constant α is assumed to represent a number of particles
produced in one parton-parton collision. The di�erential multiplicity at zero rapidity dN/dy
was approximated in the same way:

dN

dy
(b,Σ) = γNcoll(b,Σ), (6.4)

the constant γ determined by demanding that mean dN/dy is 5.8 [23].

The �nal step was to perform much more accurate Monte Carlo sampling in order to calculate
the expected elliptic �ow coe�cient. For each of 600 000 proton con�guration samples the
eccentricity (4.6), mean transverse size (3.6), multiplicity at midrapidity (6.4) and eventually
v2 (3.4) were calculated.

It is v2
2, not v2, that is extracted from two-particle correlation (3.2). Thus, in order to compare

it with the result of calculations, one should determine the expected value of v2
2 and then take

a square root of it. There is no ambiguity about the sign of v2 as it is always assumed to be
positive according to (3.4). It is also necessary to multiply each v2

2 by a weighting factor of
multiplicity N = αNcoll (factor α drops out in the below equation) in a given event as the
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correlation function presented by CMS is the average of correlations in bins multiplied by the
average bin multiplicity [1]:

〈
v2

2

〉
=

1

〈Ncoll〉σpp

∫
· · ·
∫ ∫ ∞

0
v2

2(b,Σ)Ncoll(b,Σ)
dσpp
db

(b,Σ) db d12Σ (6.5)

In addition to performing calculations on minimum-bias events, elliptic �ow and other in-
teresting quantities were calculated also only for high-multiplicity events. The trigger for
classifying an event to this category (set by the author of the thesis) was the multiplicity
approximated by (4.4) higher than 85 particles. Such events constitute (0.1 - 3)% of all the
events (depending on parameters rq and κ) which is of the same order of magnitude as the
percentage of N > 110 CMS events (1.6%).

6.2. Results

The most important results were the values of elliptic �ow coe�cient, which can be compared
to [9], and the shapes of multiplicity distributions, compared to the experimentally measured
[22, 23]. The di�erential cross section mean number of binary collisions and mean eccentricity
per b were calculated to present a structure of the event in the impact parameter space.
The eccentricity distributions in events were also determined to assess the range of occurring
eccentricities.

The results of calculations for several values of quark radius when κ follows the dependence
(5.4) are presented in Table 6.1. Only radii larger than rp/2 = 0.25 fm were considered.
The expected v2 for minimum bias (MB) events lies in the range of 0.02 - 0.04 while for
high-multiplicity events (HM) it is not signi�cantly di�erent. The ridge in the two-particle
correlation is proportional to v2

2 times the mean multiplicity in a bin [9]. The non-�ow corre-
lations ignored in the calculations is probably the reason why the ridge can be distinguished
from the background only in the highest multiplicity bin.

The multiplicity distributions, based on the number of produced particles to number of colli-
sions proportionality, are shown in Fig. 6.2. They do not reproduce well experimental hadron
multiplicity distribution which exhibits much longer tail of high-multiplicity events [22].

Di�erential cross section (Fig. 6.6) and the mean number of partonic collisions as a function
of b (Fig. 6.4) do not exhibit considerable dependence on rq nor κ and that is why the plots
of these quantities are presented only for the case κ = 1 − rq/rp. The area under the plot
of di�erential cross section always equals the total (inelastic) cross section of 60 mb. The
mean number of binary collisions decreases with b very strongly which is observed for other
parametrizations of proton density as well [26].

Unweighed event eccentricity distributions (Fig. 6.5) have a maximum around ε = 0.1 and are
getting more and more wide with decreasing rq. The reason for this is the widening with rq
distribution of quark positions due to (5.7) which makes chances for eccentric con�gurations
higher.

Remarkably, for medium rq the mean eccentricity is always highest in central collisions (Fig.
6.6) contrary to the expectation that it would be highest for medium values of b by when the
overlapping densities have almond-like shape (Fig. 3.1). However, one should remember that
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it is �uctuating quark con�guration and not smooth isotropic density of proton considered
here.

The results of calculations in the limit rq = rp are shown in Table 6.2 and Fig. 6.7. In
this limiting case the �uctuations of quarks positions are frozen and the parametrization of
proton is one Gaussian function. The product of two isotropic Gaussian functions is isotropic
even if the origins do not coincide. Therefore, there can be no eccentricity. This would be
unrealistic in heavy-ion collisions where the eccentricity due to the non-zero impact parameter
is believed to occur. However, it may be that the main source of the eccentricity in pp collisions
are �uctuating quark con�gurations.

The central gluon body in�uence on the results was analyzed by loosening the constraint (5.4)
and performing calculations for three chosen constant values of κ: 0, 0.25, 0.5.

The results for κ = 0 corresponding to the case without the gluon body are presented in
Table 6.3. The expected v2 can be as high as 0.07 - 0.08 for rq = 0.25 fm. The multiplicity
distributions (Fig. 6.8) for medium quark radii cover a very broad range, similar to the one
observed experimentally. It can be easily understood as high density con�gurations of over-
lapping quarks are more probable since the whole mass of proton is contained in quarks. The
eccentricity distributions (Fig. 6.9) are also much wider and mean eccentricities (Fig. 6.10)
reach relatively high values.

An interesting feature is seen for κ = 0.25 and 0.5. A huge eccentricity occurs in mid-central
collisions for large quark radii (Fig. 6.13, 6.16). It resembles the one due to the almond-like
shape of collision region (Fig. 3.1). However, it turns out the source of the anisotropy is an
elongation of collision density along the impact parameter vector (90-degree rotated almond
shape). The illustration is provided in Fig. 6.17. The eccentricity obtained in this way would
imply a strong ridge e�ect in the medium multiplicity bins, which consist of the mid-central
collisions according to the Glauber model. For this reason, the set of parameters leading to
this e�ect should be disregarded.
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Table 6.1: Results for minimum bias and high-multiplicity (HM) events

Input

Quark radius rq [fm] 0.25 0.30 0.35 0.40 0.45

Gluon body content κ 0.5 0.4 0.3 0.2 0.1

E�ective partonic cross section σgg [mb] 4.3 4.3 4.3 4.3 4.3

Output

E�ective number of partons Ng 6.4 6.5 6.5 6.1 5.7

Mean number of parton collisions 〈Ncoll〉 2.5 2.7 2.7 2.3 1.9

Produced particles parton collision α 11.8 11.1 11.3 13.2 16.1

dN/dy per parton collision γ 2.3 2.1 2.2 2.6 3.1

Mean eccentricity 〈ε〉 0.18 0.18 0.17 0.13 0.09

RMS eccentricity
√
〈ε2〉 0.22 0.21 0.20 0.16 0.10

Mean eccentricity in HM events 〈ε〉HM 0.18 0.15 0.13 0.09 0.05

RMS eccentricity in HM events
√
〈ε2〉HM 0.20 0.17 0.14 0.10 0.05

Expected elliptic �ow
√〈

v2
2

〉
0.04 0.04 0.03 0.03 0.02

Expected elliptic �ow in HM events
√〈

v2
2

〉
HM

0.05 0.04 0.03 0.02 0.01

Fraction of HM events 0.03 0.03 0.03 0.03 0.01

Figure 6.2: Event multiplicity distribution for κ = 1− rq/rp compared with [22]
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Figure 6.3: Di�erential cross section as a function of impact parameter b for κ = 1− rq/rp

Figure 6.4: Mean number of binary partonic collisions as a function of impact parameter b
for κ = 1− rq/rp
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Figure 6.5: Event eccentricity distribution for κ = 1− rq/rp

Figure 6.6: Mean eccentricity as a function of impact parameter b for κ = 1− rq/rp
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Table 6.2: Results for minimum bias events for one Gaussian parametrization of proton's
density

Input

Quark radius rq [fm] 0.5

Gluon body content κ any

E�ective partonic cross section σgg [mb] 4.3

Output

E�ective number of partons Ng 5.2

Mean number of parton collisions 〈Ncoll〉 1.4

Produced particles per parton collision α 20.9

dN/dy per parton collision γ 4.0

Mean eccentricity 〈ε〉 0

Expected elliptic �ow
√〈

v2
2

〉
0

Figure 6.7: Event multiplicity distribution for one Gaussian parametrization of proton's den-
sity compared with [22]
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Table 6.3: Results for minimum bias and high-multiplicity (HM) events without central gluon
body (κ = 0)

Input

Quark radius rq [fm] 0.25 0.30 0.35 0.40 0.45

Gluon body content κ 0 0 0 0 0

E�ective partonic cross section σgg [mb] 4.3 4.3 4.3 4.3 4.3

Output

E�ective number of partons Ng 7.6 6.6 6.0 5.6 5.4

Mean number of parton collisions 〈Ncoll〉 3.9 2.8 2.1 1.8 1.6

Produced particles per parton collision α 7.7 11.0 14.0 16.2 18.6

dN/dy per parton collision γ 1.5 2.1 2.7 3.1 3.6

Mean eccentricity 〈ε〉 0.28 0.25 0.20 0.13 0.07

RMS eccentricity
√
〈ε2〉 0.35 0.30 0.24 0.16 0.09

Mean eccentricity in HM events 〈ε〉HM 0.30 0.22 0.15 0.09 0.03

RMS eccentricity in HM events
√
〈ε2〉HM 0.34 0.26 0.17 0.10 0.03

Expected elliptic �ow
√〈

v2
2

〉
0.07 0.05 0.04 0.03 0.01

Expected elliptic �ow in HM events
√〈

v2
2

〉
HM

0.08 0.06 0.04 0.02 0.01

Fraction of HM events 0.04 0.03 0.02 0.01 0.001

Figure 6.8: Event multiplicity distribution for κ = 0 compared with [22]
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Figure 6.9: Event eccentricity distribution for κ = 0

Figure 6.10: Mean eccentricity as a function of b for κ = 0
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Table 6.4: Results for minimum bias and high-multiplicity (HM) events for κ = 0.25

Input

Quark radius rq [fm] 0.25 0.30 0.35 0.40 0.45

Gluon body content κ 0.25 0.25 0.25 0.25 0.25

E�ective partonic cross section σgg [mb] 4.3 4.3 4.3 4.3 4.3

Output

E�ective number of partons Ng 6.7 6.5 6.4 6.2 6.2

Mean number of parton collisions 〈Ncoll〉 2.9 2.7 2.5 2.4 2.4

Produced particles per parton collision α 10.2 11.1 11.8 12.4 12.6

dN/dy per parton collision γ 2.0 2.2 2.3 2.4 2.4

Mean eccentricity 〈ε〉 0.23 0.20 0.17 0.13 0.15

RMS eccentricity
√
〈ε2〉 0.28 0.25 0.20 0.16 0.16

Mean eccentricity in HM events 〈ε〉HM 0.24 0.18 0.13 0.09 0.06

RMS eccentricity in HM events
√
〈ε2〉HM 0.28 0.21 0.15 0.10 0.07

Expected elliptic �ow
√〈

v2
2

〉
0.06 0.04 0.03 0.03 0.02

Expected elliptic �ow in HM events
√〈

v2
2

〉
HM

0.06 0.05 0.03 0.02 0.02

Fraction of HM events 0.03 0.03 0.03 0.03 0.06

Figure 6.11: Event multiplicity distribution for κ = 0.25 compared with [22]
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Figure 6.12: Event eccentricity distribution for κ = 0.25

Figure 6.13: Mean eccentricity as a function of b for κ = 0.25
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Table 6.5: Results for minimum bias and high-multiplicity (HM) events for κ = 0.5

Input

Quark radius rq [fm] 0.25 0.30 0.35 0.40 0.45

Gluon body content κ 0.5 0.5 0.5 0.5 0.5

E�ective partonic cross section σgg [mb] 4.3 4.3 4.3 4.3 4.3

Output

E�ective number of partons Ng 6.4 6.6 6.9 7.4 7.6

Mean number of parton collisions 〈Ncoll〉 2.5 2.8 3.1 3.5 3.8

Produced particles per parton collision α 11.8 10.7 9.7 8.5 7.8

dN/dy per parton collision γ 2.3 2.1 1.9 1.6 1.5

Mean eccentricity 〈ε〉 0.18 0.16 0.14 0.15 0.27

RMS eccentricity
√
〈ε2〉 0.22 0.19 0.17 0.17 0.29

Mean eccentricity in HM events 〈ε〉HM 0.18 0.13 0.10 0.07 0.06

RMS eccentricity in HM events
√
〈ε2〉HM 0.20 0.15 0.11 0.08 0.07

Expected elliptic �ow
√〈

v2
2

〉
0.04 0.03 0.03 0.02 0.03

Expected elliptic �ow in HM events
√〈

v2
2

〉
HM

0.05 0.03 0.03 0.02 0.02

Fraction of HM events 0.03 0.03 0.04 0.07 0.10

Figure 6.14: Event multiplicity distribution for κ = 0.5 compared with [22]
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Figure 6.15: Event eccentricity distribution for κ = 0.5

Figure 6.16: Mean eccentricity as a function of b for κ = 0.5
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(a) (b)

(c)

Figure 6.17: Sample proton densities (a, b) and the collision density (c) for b = 1.3 fm,
κ = 0.5, rq = 0.45 fm, N = 7.6, σgg = 4.3 mb. The total number of partonic collisions and
the eccentricity are shown in the picture.
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Chapter 7

Discussion

The results of the calculation do not predict an enhancement of elliptic �ow in high-multiplicity
events. However, it is not contradictory with the observation of the ridge in these events as the
ridge height is proportional to the mean multiplicity. What lacks is the better understanding
of the non-�ow correlations which may obscure the ridge e�ect in lower multiplicity events.

The mean eccentricity in minimum bias events is generally slightly larger than in high-
multiplicity events but the smaller denominator of (3.4) in the latter makes up for this di�er-
ence. The estimated elliptic �ow coe�cient for quark radius rq = (0.25-0.30) fm (v2 ≈ 0.04)
are in agreement with the possible range of v2 extracted from the CMS data in [9] (v2 = 0.04-
0.10). If the gluon body content parameter κ is decreased, one can even obtain higher elliptic
�ow (v2 ≈ 0.08) which is still in agreement with the experimental data.

Several authors estimated the elliptic �ow coe�cient v2 in pp collisions at
√
s = 14 TeV

[24, 25, 26, 27, 28, 29]. Various proton parametrization without �uctuating variables were
analyzed in [26] leading to v2 in range 0.01-0.1. In [28] a simple model of proton made of
randomly located Gaussian 'hot spots' were considered implying higher v2. These results are
similar to the prediction of the thesis. It will be probably very di�cult to distinguish between
these models only by focusing on the ridge e�ect. Another possible test of the models may
be o�ered e.g. by the attempt to interpret the femtoscopy data on pp collisions [30, 31].

What can be learnt about proton structure is that in order to explain broad multiplicity
distribution in pp collisions and initial spatial anisotropies �uctuations some proton's internal
degrees of freedom are needed. The positions of 3 e�ective quarks assumed their role in this
thesis. Under the assumptions presented, data on elliptic �ow and multiplicity distributions at√
s = 7 TeV favor e�ective quark radius of half proton radius. The necessity of central gluon

body for describing data is ambiguous as it decreases the e�ects of con�gurations' �uctuations.
Moreover, it is the source of arti�cial eccentricities at mid-central collisions. Probably a better
parametrization for the gluon medium in proton, taking into account actual quark positions,
should be proposed.

Another type of proton's internal structure was investigated in [10]. In that model a proton
is made of a quark and a diquark (two closely bound quarks) connected by a �ux tube.
Two cylinder-like structures like these can have di�erent orientations with respect to each
other when they collide. The authors postulated that high-multiplicity events correspond to
collisions in which the tubes are perpendicular to direction of the movement and parallel to
each other. The area of the interaction is then extremely eccentric. Consequently, the events
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characterized by the largest overlap of protons are the ones producing the largest elliptic
�ow. The e�ective quark model presented in the thesis lacks this kind of an easy to grasp
correlation between multiplicity and eccentricity. It would be interesting to parametrize the
proton density in the �ux tube model and perform the calculations to verify the intuitions.

The reasoning presented here is founded on many simpli�cations. It is by no means certain
that it can explain the physics of pp collisions. However, the author hopes that this ideas can
serve as a starting point for further more realistic searches of possible footprint of proton's
internal structure in the ridge e�ect.
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